- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000200003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Chavez, Anastasia (5)
-
Behrend, Roger E. (2)
-
Castillo, Federico (2)
-
Diaz-Lopez, Alexander (2)
-
Escobar, Laura (2)
-
Harris, Pamela (2)
-
Insko, Erik (2)
-
Benedetti, Carolina (1)
-
Camacho, Jan Tracy (1)
-
O’Neill, Christopher (1)
-
Tamayo Jiménez, Daniel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Behrend, Roger E.; Castillo, Federico; Chavez, Anastasia; Diaz-Lopez, Alexander; Escobar, Laura; Harris, Pamela; Insko, Erik (, Séminaire lotharingien de combinatoire)
-
Chavez, Anastasia; O’Neill, Christopher (, The American Mathematical Monthly)
-
Benedetti, Carolina; Chavez, Anastasia; Tamayo Jiménez, Daniel (, The Electronic Journal of Combinatorics)Two matroids $$M$$ and $$N$$ are said to be concordant if there is a strong map from $$N$$ to $$M$$. This also can be stated by saying that each circuit of $$N$$ is a union of circuits of $$M$$. In this paper, we consider a class of matroids called positroids, introduced by Postnikov, and utilize their combinatorics to determine concordance among some of them. More precisely, given a uniform positroid, we give a purely combinatorial characterization of a family of positroids that is concordant with it. We do this by means of their associated decorated permutations. As a byproduct of our work, we describe completely the collection of circuits of this particular subset of positroids.more » « less
-
Camacho, Jan Tracy; Chavez, Anastasia (, Involve, a Journal of Mathematics)
An official website of the United States government

Full Text Available